Sunbeam Documentation
Release 1.0

Erik Clarke, Chunyu Zhao, Jesse Connell

Jun 27, 2022

Contents:

1 Quickstart Guide 3
.1 Inmstallation e e e e e e 3
1.2 Setup . . o o o e e e e e e e 4
1.3 Running e e e e e e e 4
1.4 Viewingresults L L e e e e e 5
2 User Guide 7
2.1 Installation L e e e e e e e e 8
22 Setup 9
2.3 Configuration o i e e e e e e e e e e e e e e e e 10
24 RUNNING . . . o o e e e e e e e e e e 12
2.5 OUIPULS .« . v v ot e e e e e e e e e e e e e e e 13
2.6 Troubleshooting L 15
3 Sunbeam Extensions 17

Sunbeam Documentation, Release 1.0

Sunbeam is a pipeline written in snakemake that simplifies and automates many of the steps in metagenomic sequenc-
ing analysis. It uses conda to manage dependencies, so it doesn’t have pre-existing dependencies or admin privileges,
and can be deployed on most Linux and Mac workstations and clusters.

Sunbeam currently automates the following tasks:
 Quality control, including adaptor trimming, host read removal, and quality filtering;
» Taxonomic assignment of reads to databases using Kraken;
* Assembly of reads into contigs using Megabhit;
* Contig annotation using BLAST[n/p/x];
* Mapping of reads to target genomes; and
* OREF prediction using Prodigal

Sunbeam was designed to be modular and extensible. We have a few pre-built Sunbeam Extensions available that
handle visualization tasks, including contig assembly graphs, read alignments, and taxonomic classifications.

To get started, see our Quickstart Guide!

Contents: 1

http://snakemake.readthedocs.io
http://conda.io
https://github.com/DerrickWood/kraken
https://github.com/voutcn/megahit
https://github.com/hyattpd/Prodigal

Sunbeam Documentation, Release 1.0

2 Contents:

CHAPTER 1

Quickstart Guide

Contents

e Quickstart Guide

Installation

Setup

Running

Viewing results

1.1 Installation

Download a copy of Sunbeam from our GitHub repository, and install.

git clone -b stable https://github.com/eclarke/sunbeam sunbeam-stable
cd sunbeam-stable

./install.sh

tests/run_tests.bash —e sunbeam

This installs Sunbeam and all its dependencies, including the Conda environment manager, if required. It then runs
some tests to make sure everything was installed correctly.

Tip: If you’ve never installed Conda before, you’ll need to add it to your shell’s path. If you’re running Bash (the most
common terminal shell), the following command will add it to your path: echo 'export PATH=$PATH:$HOME/
miniconda3/bin® > ~/.bashrc

If you see “Tests failed”, check out our Troubleshooting section or file an issue on our GitHub page.

https://conda.io/miniconda.html
https://github.com/eclarke/sunbeam/issues

Sunbeam Documentation, Release 1.0

1.2 Setup

Let’s say your sequencing reads live in a folder called /sequencing/project/reads, with one or two files per
sample (for single- and paired-end sequencing, respectively). These files must be in gzipped FASTQ format.

Let’s create a new Sunbeam project (we’ll call it my_project):

source activate sunbeam
sunbeam init my_project --data_fp /sequencing/project/reads

Sunbeam will create a new folder called my_project and put two files there:
* sunbeam_config.yml contains all the configuration parameters for each step of the Sunbeam pipeline.

e samples.csv is a comma-separated list of samples that Sunbeam found the given data folder, along with
absolute paths to their FASTQ files.

Right now we have everything we need to do basic quality-control and contig assembly. However, let’s go ahead and
set up contaminant filtering and some basic taxonomy databases to make things interesting.

1.2.1 Contaminant filtering

Sunbeam can align your reads to an arbitrary number of contaminant sequences or host genomes and remove reads
that map above a given threshold.

To use this, make a folder containing all the target sequences in FASTA format. The filenames should end in “fasta”
to be recognized by Sunbeam. In your sunbeam_config.yml file, edit the host_fp: line in the gc section to
point to this folder.

1.2.2 Taxonomic classification
Sunbeam can use Kraken to assign putative taxonomic identities to your reads. While creating a Kraken database is

beyond the scope of this guide, pre-built ones are available at the Kraken homepage. Download or build one, then add
the path to the database under classify:kraken_db_fp:.

1.2.3 Contig annotation
Sunbeam can automatically BLAST your contigs against any number of nucleotide or protein databases and summa-

rize the top hits. Download or create your BLAST databases, then add the paths to your config file, following the
instructions on here: blastdbs.

1.2.4 Reference mapping

If you’d like to map the reads against a set of reference genomes of interest, follow the same method as for the
host/contaminant sequences above. Make a folder containing FASTA files for each reference genome, then add the
path to that folder in mapping:genomes_fp:.

1.3 Running

After you’ve finished editing your config file, you’re ready to run Sunbeam:

4 Chapter 1. Quickstart Guide

http://ccb.jhu.edu/software/kraken/

Sunbeam Documentation, Release 1.0

sunbeam run --configfile my_project/sunbeam_config.yml

By default, this will do a lot, including trimming and quality-controlling your reads, removing contaminant, host,
and low-complexity sequences, assigning read-level taxonomy, assembling the reads in each sample into contigs, and
then BLASTing those contigs against your databases. Each of these steps can also be run independently by adding
arguments after the sunbeam run command. See Running for more info.

1.4 Viewing results

The output is stored by default under my_project/sunbeam_output. For more information on the output files
and all of Sunbeam’s different parts, see our full User Guide!

1.4. Viewing results 5

Sunbeam Documentation, Release 1.0

6 Chapter 1. Quickstart Guide

CHAPTER 2

User Guide

Contents

e User Guide

Installation
* Testing
* Updating

* Uninstalling or reinstalling

Setup
% Activating Sunbeam

* Creating a new project

Configuration

* Sections

Running

x Cluster options

Outputs
x Contig annotation
* Contig assembly

Taxonomic classification

*

* Alignment to genomes

% Quality control

— Troubleshooting

Sunbeam Documentation, Release 1.0

2.1 Installation

Clone the stable branch of Sunbeam and run the installation script:

git clone -b stable https://github.com/eclarke/sunbeam sunbeam-stable
cd sunbeam-stable
bash install.sh

The installer will check for and install the three components necessary for Sunbeam to work. The first is Conda, a
system for downloading and managing software environments. The second is the Sunbeam environment, which will
contain all the required software. The third is the Sunbeam library, which provides the necessary commands to run
Sunbeam.

All of this is handled for you automatically. If Sunbeam is already installed, you can upgrade either or both the
Sunbeam environment and library by passing ——upgrade [env/1lib/all] to the install script.

If you don’t have Conda installed prior to this, you will need to add a line (displayed during install) to your config file
(usually in ~/ .bashrc or ~/ .profile). Restart your terminal after installation for this to take effect.

2.1.1 Testing

We’ve included a test script that should verify all the dependencies are installed and Sunbeam can run properly. We
strongly recommend running this after installing or updating Sunbeam:

bash tests/run_tests.bash

If the tests fail, you should either refer to our troubleshooting guide or file an issue on our Github page.

2.1.2 Updating

Sunbeam follows semantic versioning practices. In short, this means that the version has three numbers: major, minor
and patch. For instance, a version number of 1.2.1 has 1 as the major version, 2 as the minor, and 1 as the patch.

When we update Sunbeam, if your config files and environment will work between upgrades, we will increment the
patch or minor numbers (e.g. 1.0.0 -> 1.1.0). All you need to do is the following:

git pull
./install.sh --upgrade all

If we make a change that affects your config file (such as renaming keys or adding a new section), we will increase
the major number (e.g. 1.1.0 -> 2.0.0). When this occurs, you can use the same update procedure as before, and then
update your config file to the new format:

git pull

./install.sh --upgrade all

source activate sunbeam

sunbeam config upgrade --in_place /path/to/my_config.yml

It’s a good idea to re-run the tests after this to make sure everything is working.

2.1.3 Uninstalling or reinstalling

If things go awry and updating doesn’t work, simply uninstall and reinstall Sunbeam.

8 Chapter 2. User Guide

https://conda.io
https://github.com/eclarke/sunbeam/issues

Sunbeam Documentation, Release 1.0

source deactivate
conda env remove sunbeam
rm -rf sunbeam-stable

Then follow the installation instructions above.

2.2 Setup

2.2.1 Activating Sunbeam

Almost all commands from this point forward require us to activate the Sunbeam conda environment:

source activate sunbeam

You should see ‘(sunbeam)’ in your prompt when you’re in the environment. To leave the environment, run source
deactivate or close the terminal.

2.2.2 Creating a new project

We provide a utility, sunbeam init, to create a new config file and sample list for a project. The utility takes one
required argument: a path to your project folder. This folder will be created if it doesn’t exist. You can also specify
the path to your gzipped fastq files, and Sunbeam will try to guess how your samples are named, and whether they’re
paired.

sunbeam init --data_fp /path/to/fastqg/files /path/to/my_project

In this directory, a new config file and a new sample list were created (by default named sunbeam_config.yml
and samplelist.csv, respectively). Edit the config file in your favorite text editor- all the keys are described
below.

Note: Sunbeam will do its best to determine how your samples are named in the data_fp you
specify. It assumes they are named something regular, like MP66_S109_L008_R1_001.fastg.gz and
MP66_S109_L008_R2_001.fastqg.gz. In this case, the sample name would be ‘MP66_S109_L008’ and the
read pair indicator would be ‘1’ and ‘2’. Thus, the filename format would look like {sample}_R{rp}_001.
fastq.gz, where {sample} defines the sample name and {rp} defines the 1 or 2 in the read pair.

If you have single-end reads, you can pass ——single_end to sunbeam init and it will not try to identify read
pairs.

If the guessing doesn’t work as expected, you can manually specify the filename format after the ——format option
in sunbeam init.

Finally, if you don’t have your data ready yet, simply omit the ——data_ fp option. You can create a sample list later
with sunbeam list_samples.

If some config values are always the same for all projects (e.g. paths to shared databases), you can put these keys in a
file and auto-populate your config file with them during initialization. For instance, if your Kraken databases are lo-
cated at /shared/kraken/standard, you could have a file containing the following called common_values.
yml:

classify:
kraken_db_fp: "/shared/kraken/standard"

2.2. Setup 9

Sunbeam Documentation, Release 1.0

When you make a new Sunbeam project, use the ——defaults common_values.yml as part of the init com-

mand.

Further usage information is available by typing sunbeam init --help.

2.3 Configuration

Sunbeam has lots of configuration options, but most don’t need individual attention. Below, each is described by
section.

2.3.1 Sections

all

qc

root: The root project folder, used to resolve any relative paths in the rest of the config file.
output_ fp: Path to where the Sunbeam outputs will be stored.

samplelist_fp: Path to a comma-separated file where each row contains a sample name and one or two
paths (if single- or paired-end) to raw gzipped fastq files. This can be created for you by sunbeam init or
sunbeam list_samples.

paired_end: ‘true’ or ‘false’ depending on whether you are using paired- or single-end reads.

version: Automatically added for you by sunbeam init. Ensures compatibility with the right version of
Sunbeam.

suf fix: the name of the subfolder to hold outputs from the quality-control steps
threads: the number of threads to use for rules in this section
java_heapsize: the memory available to Trimmomatic

leading: (trimmomatic) remove the leading bases of a read if below this quality
trailing: (trimmomatic) remove the trailing bases of a read if below this quality
slidingwindow: (trimmomatic) the [width, avg. quality] of the sliding window
minlength: (trimmomatic) drop reads smaller than this length

adapter_fp: (trimmomatic) path to the Illumina paired-end adaptors (autofilled)

fwd_adaptors: (cutadapt) custom forward adaptor sequences to remove using cutadapt. Replace with “”” to
skip.

rev_adaptors: (cutadapt) custom reverse adaptor sequences to remove using cutadapt. Replace with “” to
skip.

mask_low_complexity: [true/false] mask low-complexity sequences with Ns

kz_threshold: a value between 0 and 1 to determine the low-complexity boundary (1 is most stringent).
Ignored if not masking low-complexity sequences.

kz_window: window size to use (in bp) for local complexity assessment. Ignored if not masking low-
complexity sequences.

pct_id: (decontaminate) minimum percent identity to host genome to consider match

10

Chapter 2. User Guide

Sunbeam Documentation, Release 1.0

* frac: (decontaminate) minimum fraction of the read that must align to consider match

* host_ fp: the path to the folder with host/contaminant genomes (ending in *.fasta)

classify

e suffix: the name of the subfolder to hold outputs from the taxonomic classification steps
* threads: threads to use for Kraken

* kraken_db_ fp: path to Kraken database

assembly

e suffix: the name of the folder to hold outputs from the assembly steps
* min_Jlen: the minimum contig length to keep

e threads: threads to use for the MEGAHIT assembler

annotation

* suffix: the name of the folder to hold contig annotation results

* min_contig_length: minimum length of contig to annotate (shorter contigs are skipped)
e circular_kmin: smallest length of kmers used to search for circularity

e circular_kmax: longest length of kmers used to search for circularity

* circular_min_length: smallest length of contig to check for circularity

blast

* threads: number of threads provided to all BLAST programs

blastdbs

* root_fp: path to a directory containing BLAST databases (if they’re all in the same place)
* nucleotide: the section to define any nucleotide BLAST databases (see tip below for syntax)

* protein: the section to define any protein BLAST databases (see tip below)

Tip: The structure for this section allows you to specify arbitrary numbers of BLAST databases of either type.
For example, if you had a local copy of nt and a couple of custom protein databases, your section here would
look like this (assuming they’re all in the same parent directory):

blastdbs:
root_fp: "/local/blast_databases"
nucleotide:
nt: "nt/nt"
protein:
vEdb: "virulence_factors/virdb"
card: "/some/other/path/card_db/card"

2.3. Configuration 11

Sunbeam Documentation, Release 1.0

This tells Sunbeam you have three BLAST databases, two of which live in /local/blast_databases
and a third that lives in /some/other/path. It will run nucleotide blast on the nucleotide databases and
BLASTX and BLASTP on the protein databases.

mapping

* suffix: the name of the subfolder to create for mapping output (bam files, etc)

* genomes_fp: path to a directory with an arbitrary number of target genomes upon which to map reads.
Genomes should be in FASTA format, and Sunbeam will create the indexes if necessary.

* threads: number of threads to use for alignment to the target genomes

* samtools_opts: a string added to the samtools view command during mapping. This is a good place
to add ‘-F4’ to keep only mapped reads and decrease the space these files occupy.

2.4 Running

To run Sunbeam, make sure you’ve activated the sunbeam environment. Then run:

’sunbeam run —--configfile ~/path/to/config.yml

There are many options that you can use to determine which outputs you want. By default, if nothing is specified, this
runs the entire pipeline. However, each section is broken up into subsections that can be called individually, and will
only execute the steps necessary to get their outputs. These are specified after the command above and consist of the
following:

* all_gc: basic quality control on all reads (no host read removal)

* all_decontam: quality control and host read removal on all samples

* all_mapping: align reads to target genomes

* all_classify: classify taxonomic provenance of all qc’d, decontaminated reads
* all_assembly: build contigs from all qc’d, decontaminated reads

* all_annotate: annotate contigs using defined BLAST databases

To use one of these options, simply run it like so:

sunbeam run -- --configfile ~/path/to/config.yml all_classify

In addition, since Sunbeam is really just a set of snakemake rules, all the (many) snakemake options apply here as
well. Some useful ones are:

e —n performs a dry run, and will just list which rules are going to be executed without actually doing so.

* —k allows the workflow to continue with unrelated rules if one produces an error (useful for malformed samples,
which can also be added to the exclude config option).

e —p prints the actual shell command executed for each rule, which is very helpful for debugging purposes.

12 Chapter 2. User Guide

http://snakemake.readthedocs.io/en/latest/executable.html

Sunbeam Documentation, Release 1.0

2.4.1 Cluster options

Sunbeam inherits its cluster abilities from Snakemake. There’s nothing special about installing Sunbeam on a cluster,
but in order to distribute work to cluster nodes, you have to use the ——cluster and ——jobs flags. For example,
if we wanted each rule to run on a 12-thread node, and a max of 100 rules executing in parallel, we would use the
following command on our cluster:

sunbeam run -- --configfile ~/path/to/config.yml —--cluster "bsub -n 12" -3 100 -w 90

The —w 90 flag is provided to account for filesystem latency that often causes issues on clusters. It asks Snakemake
to wait for 90 seconds before complaining that an expected output file is missing.

2.5 Outputs

This section describes all the outputs from Sunbeam. Here is an example output directory, where we had two samples
(samplel and sample2), and two BLAST databases, one nucleotide (‘bacteria’) and one protein (‘card’).

sunbeam_output
— annotation
—— blastn
L— bacteria
L contig
—— blastp
L— card
L prodigal
— blastx
L— card
L prodigal
— genes
L prodigal
— log
-— summary
— assembly
F—— contigs
— classify
L— kxraken
L— raw
— mapping
genomel

L— qc
cleaned
decontam
log

decontam
cutadapt
trimmomatic

reports

In order of appearance, the folders contain the following:

2.5.1 Contig annotation

2.5. Outputs 13

Sunbeam Documentation, Release 1.0

sunbeam_output
— annotation
—— blastn
L— bacteria
L contig
—— blastp
L— card
L prodigal
— blastx
L— card
L prodigal
— genes
L prodigal
L log

— summary

This contains the BLAST results in XML from the assembled contigs. blastn contains the results from directly
BLASTing the contig nucleotide sequences against the nucleotide databases. blastp and blastx use genes identi-
fied by the ORF finding program Prodigal to search for hits in the protein databases.

The genes found from Prodigal are available in the genes folder.

Finally, the summary folder contains an aggregated report of the number and types of hits of each contig against the
BLAST databases, as well as length and circularity.

2.5.2 Contig assembly

assembly
F—— contigs

This contains the assembled contigs for each sample under ‘contigs’.

2.5.3 Taxonomic classification

classify
L— kraken
L— raw

This contains the taxonomic outputs from Kraken, both the raw output as well as summarized results. The primary
output file is all_samples.tsv, which is a BIOM-style format with samples as columns and taxonomy IDs as
rows, and number of reads assigned to each in each cell.

2.5.4 Alignment to genomes

mapping
L genomel

Alignment files (in BAM format) to each target genome are contained in subfolders named for the genome, such as
‘genomel’.

14 Chapter 2. User Guide

Sunbeam Documentation, Release 1.0

2.5.5 Quality control

L— gc

cleaned
decontam
log

decontam
cutadapt
trimmomatic

reports

This folder contains the trimmed, low-complexity filtered reads in cleaned. The decontam folder contains the
cleaned reads that did not map to any contaminant or host genomes. In general, most downstream steps should

reference the decontam reads.

2.6 Troubleshooting

Coming soon. For now we suggest browsing the closed issues tab on Github.

2.6. Troubleshooting

15

Sunbeam Documentation, Release 1.0

16 Chapter 2. User Guide

CHAPTER 3

Sunbeam Extensions

17

	Quickstart Guide
	Installation
	Setup
	Running
	Viewing results

	User Guide
	Installation
	Setup
	Configuration
	Running
	Outputs
	Troubleshooting

	Sunbeam Extensions

